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In a thermodynamically non-ideal solution, the interdiffusion coefficient D(c) of a two-component system 
is a function of the concentration c. Since the mean concentration E in a diaphragm cell remains constant 
during interdiffusion, we have found it useful to expand D(c) in a Taylor series about ?. After truncating 
the series and substituting the result into the diaphragm cell transport equation, we obtain a Bernoulli 
ordinary differential equation, which we solve in closed form. This solution is experimentally tested by 
determining D(c) from diaphragm cell data which we accumulated on aqueous hydrochloric acid at 25°C. 
Our results are in qualitative agreement with those of R. H. Stokes, who obtained D(c) from diaphragm 
cell data by using a graphical method [J. Am. Chem. SOC. 72, 2243 (1950)l. 

KEY WORDS: Interdiffusion, aqueous hydrochloric acid 

1 INTRODUCTION 

A diaphragm cell consists of two well stirred solution compartments on opposite 
sides of a membrane, which is usually a sintered glass disk. Once the geometric cell 
constant for the device has been determined by calibration, the interdiffusion 
coefficient of a two component liquid solution can be determined by following the 
relaxation of the concentration difference, Ac(t), (of either solute or solvent) that exists 
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262 J. S .  CHEN, et al. 

across the frit. In the special case that solute and solvent form a thermodynamically 
ideal solution, the interdiffusion coefficient D is a constant, which may be determined 
using the equation 

In Eq. (1. I), 

where cl(t) and cz(r) are the concentrations below and above the frit, respectively, 
at time t ,  while cl(0) and c,(O) are the initial values of c,(t)  and cz(r). The cell constant 
p is given by 

(1.3) 

where V ,  and V ,  are the volumes of solution below and above the frit, while A 
and 1 are the effective cross sectional area and thickness of the 

In the general case where solute and solvent form a thermodynamically non-ideal 
solution, however, the diffusion coefficient is a function of concentration5. Eq. (1.1) 
still holds in this case, if D is replaced by an appropriate concentration-average 
0.' The cell constant /I is ordinarily determined from Eq. (1.1) using A@) us t 
data for aqueous KCl at 25°C where c,(O) = 0.5 M, c,(O) = 0.0 M, and D = 1.840 x 

cm2/sec.' In the case, however, where the function D(c) is required, it must be 
unfolded from determinations of D. An empirical method for accomplishing this 
was developed by Stokes6. 

Recently, we have shown that a mathematically rigorous method for determining 
D(c) from Ac(r) us t data can be obtained by integration of the two first order, ordinary 
differential equations governing the time evolution of cl(t) and ~ , ( t ) .~ ,*  These 
equations are satisfied by two integrals. The first integral may be expressed as 

where the volume- averaged mean concentration F is a constant of motion determined 
by the initial values c,(O) and c2(0). The second integral is found by solving the 
differential equation 
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DIAPHRAGM DIFFUSION CELL 263 

where D(c) is an arbitrary function of the concentration c. To specify D(c), it may 
be expanded in a Taylor series about C as 

D@)(E) 
D(c) = D(C) + ~ (c - E)", ,,=, n! 

where D("'(C) is the nth concentration derivative of D(c) evaluated at c = C. After 
substitution of Eq. (1.6) into Eq. (1.5) and evaluation of the indicated integral, 
the variables t and Ac may be separated and the resulting equation integrated to 
obtain the infinite series 

t = B ,  + B ,  ln(Ac) + B,(Ac)  + B2(Ac), + B,(Ac), + ... , (1.7) 

which constitutes the solution to Eq. (1.5). In Eq. (1.7), the coefficients 
B,, k = 0, L, 1,2, . . . , are determined as follows: B, is evaluated in terms of the other 
B, by substituting into Eq. (1.7) t = 0 and Ac(0) = c,(O) - c2(0); B,  is given by 

1 
B , =  -j@$ 

while the remaining B,, k = 1,2,3, .  . ., depend upon j3, V,,  V2 and various of 
the concentration derivatives, W ( C ) .  In the special case that V ,  = V z ,  the odd 
indexed coefficients, B2k+ ,, k = 0, 1,2, . . . , are identically zero. 

The procedure described in reference 8 for determining the form of D(c) is based 
upon Eqs. (1.6) and (1.7). For a fixed value of C and with V ,  # V,, Ac(t) us t data 
were fitted to Eq. (1.7) with B,, BL, B , ,  B , ,  B , ,  etc., treated as least squares adjustable 
parameters. The values for D(C) and D(")(cj, tz = I ,  2,. . . , were extracted from the 
least squares parameters by using Eq. (1.8) and the similar formulae given in 
Reference 8. 

Since any Ac(t) us t data set is necessarily finite in extent, the infinite series 
represented by Eq. (1.7) must be truncated if it is to be employed with the least 
squares method. For example, after truncating Eq. (1.7) at (Ac), (i.e. dropping all 
terms of order (Ac), and higher), we analyzed Ac(t) us t data for aqueous HCl at 25°C 
and F = 1 M and determined values for B , ,  B , ,  and B, .  The precision of the data 
prevented any of the higher order coefficients from being evaluated. From B,, B , ,  
and B, ,  the values of D(E), D(')(C), and D(,)(C) were computed*. 

In a subsequent study using a cell with V ,  = V2 (which causes B , ,  B, ,  B , ,  etc., to 
vanish), we truncated Eq. (1.7) at (Ac)' and fitted the result to Ac(t) us t data obtained 
from solutions of CuSO, + H,O, CoSO, + H,O, and Ni(SO,NH,), + H,O at 
25°C.9 In the case of CuSO, + H,O, both Rayleigh interferometric" and Harned 
conductimetric" measurements were available for comparison. Our diaphragm cell 
results for D(c) were in satisfactory agreement at high concentration with the Rayleigh 
and Harned results but differed from them by as much as 10% at low concentration'. 
We have analyzed some of the possible causes behind these differences'. 
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264 J. S. CHEN, et al. 

Although Eq. (1.7) constitutes an exact solution to Eq. (1.9, we have continued, 
nonetheless, to look for related, closed form approximate solutions which may prove 
to be more satisfactory for the purposes of data analysis. In this paper, we report 
such a solution obtained by truncating the Taylor series in Eq. (1.6) before substitu- 
tion into the right hand side of Eq. (1.5). I n  Section 2, we show how this truncation 
causes Eq. (1.5) to assume the form of a Bernoulli equation, which can be solved in 
closed form. Using some measurements carried out on C = 2M aqueous HCI with 
judiciously selected values of V ,  and V z ,  we demonstrate in Section 3 how our 
solution to Eq. (1.5) may be employed to cast various Ac(t) us t data sets into the 
form of straight lines, whose least squares parameters yield values for D(9,  D(’)(E), and 
D(z)(C). In Section 4, we compute D(c) in the case of aqueous HCl for values of c 
lying between 1.5 M and 3.5 M using these coefficients and a three-term truncation 
of Eq. (1.6) and compare our results with values reported by Stokes” for the same 
concentration range. 

2 THEORY 

A 

After truncating Eq. (1.6) at the term in (c - C)’, substituting the result into Eq. (1.5), 
changing the variable of integration from c to y = c - F, where dc = dy, and 
integrating with respect to y, we obtain the transport equation 

Approximate solution to Eq. (1.5) for  the case V ,  # Vz  

dAc 
2 

where 

Vl 
v, + v,’ 3!=-  

Eq. (2.1) is a Bernoulli differential equation, which may be solved by standard 
methods.13 These methods yield 

~- [exp(2@(E)t) - 11. (2.3) W E )  

Using Eqs. (1.4) and (2.2), the value of F appearing in Eq. (2.3) can be written as 

c = ?C,(O) + (1 - z)c2(O). (2.4) 

Eq. (2.3) contains the two parameters D(E) and D(”(C), which need to be evaluated 
using experimental data. In this regard, a single set of Ac(t) us t data is insufficient. 
There remains, however, flexibility in Eq. (2.3), which we next exploit. 
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DIAPHRAGM DIFFUSION CELL 265 

While maintaining the value of F invariant, we suppose that the cell is operated 
in a conjugate manner such that the new and old compartment volumes are related 
as V: = V ,  and V :  = V, .  The condition preserving the value of C specifies that 
the new initial concentrations cT(0) and c:(O) must satisfy 

cT(0) = (l/ol*)[E - (1  - a*)c;(O)], (2.5) 

where 

=l-Cr. VT 
VT + v; @* = 

The values of the initial concentrations cT(0) and cT(0) specify the initial concentration 
difference 

Ac*(O) = c ~ ( O )  - c:(O) (2.7) 

for the conjugate case. Note that because Eq. (1.3) is symmetric in V ,  and V, ,  
the value of p is unchanged when VY = V, and V $  = V. In order to suppress 
gravity driven mixing, in the conjugate experiment the cell must be positioned such 
that the denser solution is again on the bottom. After adding star (*) superscripts to 
Ac(t) and Ac(0) in Eq. (2.3) and substituting Eq. (2.6), we obtain 

Ac*(O) [ (1  - 2a)D(')(C)Ac*(O)] 
Ac*(t) 2D(C) 

1 =  1 -  Cexp(2PD(F)t) - 11, (2.8) 

which governs the time dependence of concentration differences, Ac*(t), in the 
conjugate case. 

We now suppose that the Ac*(t) data are taken at precisely the same times, t ,  as 
the Ac(t) us t set. Equations (2.3) and (2.8) may then be added together to obtain 

If data are combined according to Eq. (2.9) and the left hand side is plotted on 
the ordinate with t on the abscissa, a straight line passing through the origin with 
slope PO(?) should result. 

Once D(C) has been obtained from the slope of the line predicted by Eq. (2.9), 
D(l)(C) may be evaluated either by fitting the Ac(t) us t data to Eq. (2.3) or Ac*(r) 
us t data to Eq. (2.8). If, however, Eqs. (2.3) and (2.8) are subtracted, we obtain 

1 ( 1  - 2a)D"'(T) + 
D(d 

x Cexp(PWt) - 11 (2.10) 
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266 J. S .  CHEN, et al. 

where both data sets are combined in one equation. When the combined data sets are 
plotted according to Eq. (2.10) with the left hand side on the ordinate and 
exp(flD(2)r) - 1 on the abscissa, a straight line through the origin having a slope 
given by the quantity within the first square bracket on the right side should result. 
From the numerical value of the slope, the value of D")(I.) may be computed. 

B 

We truncate Eq. (1.6) at the term in (c - C)4 and substitute the result into Eq. ( lS ) ,  
setting 2 = $ as required by Eq. (2.2) with V ,  = V z ;  after changing the variable of 
integration from c to J = c - C and integrating, we obtain the Bernoulli equation 

Approximate solution of Eq. (1.5)fbr the case V,  = V, 

1 
= - p  D(cfAc + D"'(C)(AC)~ 

dAc [ 
dr 24 

(2.1 1 )  

In the case V ,  = V z ,  the integral on the right hand side of Eq. (1.5) is insensitive 
to all Dzk+ "(C), k = 0, 1, 2, . . . hence, the right hand side of Eq. (2.1 1 )  is correct up 
to fifth order in (Be). The solution to Eq. (2.1 1) is 

(2.12) 
Ac(0) 

[exp(Z\jD(C)t) - 13. 

Given that D(E) is known and that the value of C remains fixed by choosing 
c,(O) and c2(0) such that 

2 = &,((I) + c,(O)), (2.13) 

then Eq. (2.12) may be applied to determine the value of D(')(F) without any 
reference to the data sets described in Section 2(A). If the left hand side of Eq. (2.12) 
is plotted on the ordinate with exp(2flD(E)r) - 1 plotted on the abscissa, then Ac(t) 
us t data taken in a cell with V ,  = V ,  should form a straight line through the origin. 
From the slope of the line given by the quantity within the first square bracket on 
the right hand side of Eq. (2.13), the value of D'"(F) may be evaluated. 

3 EXPERIMENT 

A Equipment und procedures 

Two standard Stokes diaphragm cells were constructed from 10-16 pm porosity 
sintered glass disks fused into 40 mm 1.d. glass tubing. The data listed in Table 1 were 
taken with the cylindrical axis of cell =# 1 parallel to gravity and the 130 cm3 volume 
Compartment on the bottom and the 65.8 cm3 volume compartment on the top. The 
data listed in Table 2 were taken with cell # 1 in the inverted configuration with 
the 65.8 cm3 volume on the bottom and the 130 cm3 volume on the top. The data 
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DIAPHRAGM DIFFUSION CELL 267 

Table 1 HCI data from cell # 1 in the standard configuration. V, = 130 
cm3, V, = 65.8 cm3, tl = 0.664, b = 0.162 crn-’, F = 2.00 M, temperatur- 
e = 25 0.01”C 

~ 

0 
14,400 
25,200 
43,200 
64,380 
83,400 

I 18,800 
158,400 

2.253 1.500 
2.199 1.519 
2.171 1.532 
2.132 1.551 
2.084 1.581 
2.034 1.592 
1.98 1 1.619 
1.925 1.652 

0.753 
0.680 
0.639 
0.58 1 
0.503 
0.442 
0.362 
0.273 

Table 2 HCI data from cell # 1  in the conjugate configuration 
V ;  = 65.8 cm3, V,* = 130cm3, r* = 0.336, a = 0.162 cm-’, E = 2.00 
M, temperature = 25 f 0.01”C 

t(sec) cTlt) (MJ c ? l t l ( M l  Ac* I t )  ( M )  

0 2.988 1.500 1.488 
14,400 2.926 1.584 1.342 
25,200 2.889 1.646 I ,243 
43,200 2.850 1.742 1.108 
63,380 2.799 1.842 0.957 
86,400 2.754 1.93 1 0.823 

1 18,800 2.703 2.042 0.661 
158,400 2.643 2.146 0.497 

Table 3 
cm-’, ? = 2.00 M, temperature = 25 k 0.01”C 

HCI data from cell #2. V, = V, = 67.2 cm3, fl  = 0.186 

t(sec) c i ( t l M  c2 ( I l M  W t l  ( M l  

0 3.500 0.500 3.000 
14,400 3.331 0.659 2.672 
25,200 3.228 0.758 2.470 
43,200 3.054 0.92 I 2.133 

86,160 2.753 1.224 1.529 
99,600 2.700 1.278 1.422 

1 18,800 2.589 1.390 1.199 
158,400 2.432 1.540 0.892 

64,800 2.892 1.084 1.808 

listed in Table 3 were taken with cell # 2  having V ,  = V ,  = 67.2 cm3. The values 
of the relevant cell and solution parameters for each experiment are listed in the 
headings of Tables 1-3, respectively. 

Both cells included ground glass joints through which the solution compartments 
could be filled reproducibly to the exclusion of any air bubbles. In ordinary use, an 
air space above the solution in the top compartment of a Stokes cell is immaterial, 
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268 J .  S. CHEN, et al. 

but in the case of cell #1, which had to be operated in two orientations differing 
by 180", no air could be tolerated in either compartment. 

Prior to the start of each run, a concentration gradient was established within the 
frit following the standard "prediffusion" procedure. 1 .2q8  All concentrations were 
determined by conductivity measurements using a calibrated Radiometer (Copen- 
hagen) model CDM 83 conductivity meter capable of reading conductivities ranging 
from 1.3 pS/cm to 1300 pS/cm. The diaphragm cell constants /? listed in the captions 
to Tables 1-3, were determined using aqueous KCl with cl(0) = 0.5 M, c,(O) = 0.0 M, 
and D = 1.840 x lo-' cm2/sec as recommended by Woolf and Tilleyi4. 

B Materials 

Potassium chloride was Mallinckrodt AR Grade Lot 6858 KBCX, while the hydro- 
chloric acid was Mallinckrodt AR Grade Lot 3560 KCMS. Both were used without 
further purification. Water once distilled from a glass system and deaerated by 
aspiration to a residual conductivity of 1.5 pS/cm was used as the solvent for all 
solutions. 

Standard stock solutions of KCl were prepared volumetrically from weighed, dried 
potassium chloride. Stock solutions of HCI were standardized by titration against 
weighed tris(hydroxymethy1)aminomethane. 

4 RESULTS AND CONCLUSIONS 

Our experimental results are summarized in Tables 1-4. 
In Table 1, we list data taken with aqueous HCI at 25 f 0.01"C in cell # 1, which 

had unequal compartment volumes. The value for r given in the caption to the table 
was computed from I/, and I/, using Eq. (2.2). The t = 0 values of cl(t) and cZ(f) 
are given in the first line of the table and were combined according to Eq. (1.4) to 
evaluate S. 

Data taken with aqueous HC1 in cell + 1 in the conjugate configuration are listed 
in Table 2. The value of x*  was computed using Eq. (2.6), while the value of /? was 
unchanged by virtue of the symmetry of Eq. (1.3). The initial value, ct(0) = 1.500 M, 
was selected for the sake of convenience to be identical with the value of c2(0) in 
Table 1. When combined with C = 2.00 M according to Eq. (2.5), ct(0) = 1.500 M 
served to specify the value cT(0) = 2.988 M of the concentration in lower compart- 
ment listed in Table 2. 

Table 4 
and 25 f 0.01 C 

Interdiffusion coefficient and its concentration derivatives for aqueous HCI at E = 2.00 M 

4.01 1.43 0.745 
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OO 2'0 i o  sb ;o d o  I h O  I k O  1;a 
TIME (1 o4 sec] 

Figure 1 Data in Tables 1 and 2 plotted according to Eq. (2.9). 

269 

The data sets from Tables 1 and 2 were combined according to Eq. (2.9) and plotted 
in Figure 1. Giving each data point equal weight in a linear, zero intercept, least 
squares fit" resulted in an excellent straight line, the slope of which, when combined 
with fl  = 0.162 cm-2, gave the value of D(C) listed in Table 4. 

When the data sets in Tables 1 and 2 were combined by least squares according 
to Eq. (2.10), the straight line shown in Figure 2 resulted. From the least squares 
slope and values of CI and Ac(0) obtained from Table 1 and the values of Ac*(O) and 
D(C) obtained from Tables 2 and 4, respectively, the value of the instantaneous first 
derivative, D(')(F), shown in Table 4, was computed. By contrast, when the data in 
Table 1 were combined according to Eq. (2.3), we obtained D(')(E) = 1.29 x cm2 
sec-' M-', whereas when the data in Table 2 were combined according to Eq. (2.8), 
we obtained D(')(E) = 1.57 x lo-' cm2 sec-' M-I. The value ofD(')(C) listed in Table 
4 coincidently represents the arithmetic mean of the latter two; the differences among 
them may be caused by experimental error. 

Data taken with aqueous HCl in cell # 2  are summarized in Table 3. These data 
were fitted by least squares to Eq. (2.12) to produce the straight line shown in Figure 
3. When the values of Ac(0) and D(Z) listed in Tables 3 and 4, respectively, were 
combined with the least squares slope, the value of the instantaneous second 
derivative, D 2 ) ( C ) ,  shown in Table 4 resulted. 
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270 J. S .  CHEN, e? a/ .  

1.0 d 

I 

-- -I? 
I 

exp (pD(c)t)-l 
Data in Tables 1 and 2 plotted according to Eq. (2.10). Figure 2 

Note that all numerical procedures outlined above are simple enough that they 
can be performed with a good hand-held calculator, which is a great advantage over 
earlier, graphical methods. 

Truncating the Taylor series in Eq. (1.6) at the term in (c - C)3 and substituting 
C = 2.00 M and the values of D(E), Dil)(E), and D(’)(E) from Table 4 into the resulting 
quadratic produced the following polynomial representation for D(c) 

D(c)  = 4.01 + 1.43(~ - 2 )  + 0.745(~ - 2)’. (4.1) 

In Eq. (4.1), the units of c are M, while D(c) is expressed as a multiple of 10- cm’/sec. 
In Table 5, values of D(c) computed from Eq. (4.1) are compared with the results 

of the Stokes graphical method6 for the concentration interval, 1.5 M I c 5 2 . 5  M, 
which brackets the origin, C = 2.0 M, of the Taylor series. Although the Stokes 
method has no rigorous mathematical basis6V8, it nonetheless produces a result in 
excellent agreement with ours at E = 2 M. Away from this one point, however, our 
value for the local slope, Dil’(E), is too large to represent the Stokes data. We can 
only speculate on the cause of this difference. First, in the case of our data, the second 
term within the first square bracket on the right hand side of Eq. (2.10) amounts to 
only 16% of the value of the entire bracket and, as such, may be too small to 
determine D‘”(C) accurately. Second, the values we chose for Ac(0) and Ac*(O) may 
have been too large for us to safely ignore the term in (Ac)’ when we derived Eqs. 
(2.3) and (2.8). 
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1 I I I 

271 

I I I I 

exp (2PD(E)t)-l 

Figure 3 Data in Table 3 plotted according to Eq. (2.12) 

A large value of Ac(0) (or Ac*(O)) is desirable from an experimental point of view 
in order to produce a sensible change in Ac(t) (or Ac*(t)) with t .  A large concentration 
difference poses a greater threat, however, to the accuracy of Eqs. (2.3) and (2.8), 
which are derived from a Taylor series correct to order (Ac)' than it does to Eq. 
(2.12), which was derived from a series accurate to order ( A c ) ~ .  

We have pointed out previously that since Eq. (1.6) contains no terms in (c)'", it 
cannot represent D(c) for aqueous, strong electrolytes in the limit of infinite dilu- 
tionSq9. To protect the results reported in this paper from being affected by such an 
error, we selected the minimum concentrations in each experiment (c,(O) or c;(O)) 

Table 5 Comparison of Eq. (4.1) with the results obtained 
from the Stokes graphical method 

ClM) D( c j ( Eq. (4 .  I )  I "  D (c) (Stokes) 

1.5 3.37 
2.0 4.0 I 
2.5 4.8 I 

3.74 
4.04 
4.33 

a Units are 1 0  ' cm' aec I. 

Reference 2. Appendix I I .2. p. S IS 
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such that they greatly exceeded the concentration (approximately 0.1 M for 1-1 
electrolytes) where ( , ) , I 2  terms are expected to come into play. 

Finally, if V ,  # V , ,  Eq. (1.7) may be truncated at the term in ( A c ) ~  to produce a 
representation of t us Ac data, which is correct to order (Ac),. We have previously 
used this truncated series to determine the coefficients B,, B,, B , ,  and B, by least 
squares fit to aqueous HCl data'. From these least squares coefficient, D(E), D(')(E), 
and D 2 ) ( C )  were computed. The relative value of the method of reference 8, as 
compared to the method presented herein, however, as well as the proper size for 
concentration differences, can be settled only by further experiment. 
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